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Abstract

A two-stage model reduction methodology, combining the classical Component Mode

Synthesis (CMS) method and the newly developed Enhanced Projection and Assembly

(EP&A) method, is proposed in this research. The first stage of.this methodology, called

the COmponent Modes Projection and Assembly model REduction (COMPARE) method,

involves the generation of CMS mode sets, such as the MacNeal-Rubin mode sets. These

mode sets are then used to reduce the order of each component model in the Rayleigh-Ritz

sense. The resultant component models are then combined to generate reduced-order system

models at various system configurations. A composite mode set which retains important

system modes at all system configurations is then selected from these reduced-order system

models. In the second stage, the EP&:A model reduction method is employed to reduce

further the order of the system model generated in the first stage. The effectiveness of the

COMPARE methodology has been successfully demonstrated on a high-order, finite-element

model of the cruise-configured Galileo spacecraft.

1. Background and Motivation

Multibody dynamics simulation packages are gaining in popularity among dynamists

for the simulation and analysis of systems of interconnected bodies (some or all of which are

flexible). One such program, DISCOS, 1 was used in the development of control systems on

board the Galileo spacecraft. The dual-spin Galileo spacecraft was modeled as a three-body
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system, consisting of a flexible spinning rotor, a flexible stator, and a rigid scan platform.

For complex systems such as the Galileo spacecraft, practical considerations (e.g., sim-

ulation time) impose limits on the number of modes that each flexible body can retain in a

given simulation. Modal truncation procedures must be used to select and retain a limited

number of "important" modes which capture the salient features of the component dynam-

ics. The Enhanced Projection and Assembly (EP&A) 6'v technique is one way of performing

this task.

The EP_zA method, 6'7 is a model reduction methodology for articulated, multl-flexible

body systems. In this method, a composite mode set, consisting of "important" system

modes from all system configurations of interest, and not just from one particular system

configuration, is first selected. It is then augmented with static correction modes before be-

ing "projected" onto the component models to generate reduced-order component models.

To generate the composite mode set, eigenvalue problems concerning the full-order system

models, at all configurations of interest, must be solved repetitively. This is a drawback of

the EP_zA method because solving large eigenvalue problems can be costly. To overcome

this difficulty, a two-stage model reduction methodology, combining the classical Compo-

nent Mode Synthesis (CMS) method and the Enhanced Projection and Assembly method

(EP&A), is proposed in this research.

The stages involved in the proposed technique, to be called the COmponent Modes

Projection and Assembly model REduction (COMPARE) method, are illustrated in Fig.

1. First, CMS mode sets, such as the MacNeal-Rubin mode sets, are generated and used

to reduce the order of each component model in the Rayleigh-Ritz sense. These compo-

nent mode sets are then assembled :using the interface compatibility conditions to generate

reduced-order system models at various system configurations. The order of these reduced-

order system models is typically smaller than that of the full-order system model.

In the second stage, the newly developed EPX:A model reduction method is employed to

reduce further the order of the system model generated in the first stage. As described above,

the composite mode set is augmented with static correction modes before being projected

on the CMS-generated component models to generate the final reduced-order system model.

In this way, COMPARE reta{ns the merits of both the CMS and EP&A methods, without

their demerits. The effectiveness of COMPARE will be verified using a cruise-configured

Galileo spacecraft model.
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2. Component Mode Synthesis Method Revisited 2's

The Component Mode Synthesis (CMS) method is a Rayleigh-Ritz based approximation

method that is commonly used to analyze linear, high-order structural dynamics problems.

To use this method, the structure is first subdivided into a number of components (or

substructures), and a Ritz transformation is employed to reduce the model orders of these

substructures. Many component mode sets may be used to perform this reduction but

the MacNeal-Rubin (M-R) and Craig-Bampton (C-B) mode sets were shown to have good

convergence properties in the sense of CMS. Once reduced, the reduced-order component

models are then coupled using the interface compatibility conditions to form the reduced-

order system model.

Since the Craig-Bampton and MacNeal-Rubin mode sets will be used in the present

research to reduce the orders of the component models, their constructions are first briefly

reviewed. To this end, consider a multi-flexible body structure as depicted in Fig. 2.

The undamped motion of each component of the structure can be described by a matrix

differential equation

Mnn n + I(..x. = F., (1)

where xn is an n × 1 displacement vector, and M,n and K,n are n × n mass and stiffness

matrices of the component, respectively. Note that the matrix dimensions are indicated by

the matrix subscripts. The n × 1 force vector acting on the component is denoted by Fn. A

similar equation can also be written for component B.

To generate the C-B or M-R mode set, the last equation is partitioned as follows :

Mji Mjj _j + [I,:ji Kjj xj

where xi and xj represent the interface and interior coordinates, respectively.

2.1 Craig-Bampton Mode Set

The Craig-Bampton mode set is generated by augmenting a low-frequency subset of the

fixed interface (I/F) normal modes with a set of static-shape functions termed constraint

modes. The first k fixed I/F normal modes _jk, and the ordered eigenvalue matrix Akk are

related by the following relation :

-Mj.i_jkAkk + I(jj_jk = O. (3)
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There are ways to decide on the number of modes to be kept in Cjk. One way is to

keep all modes whose frequencies are less than twice a characteristic frequency of the system

(e.g., control bandwidth). 2 The above determined normal modes are then augmented with i

constraint modes, where constraint modes are static-shape functions that result by imposing

unit displacement on one coordinate of the/-set while holding the remaining coordinate in

that set fixed. It can be shown that the interior displacement for these constraint modes is

given by 8

_ji =-I'(L' Kji. (4)

The C-B mode set is

Oik Iii ]
(_jk _ji

which is then used to reduce the full-order component model.

2.2 MacNeal-Rubin Mode Set

In a manner similar to generating the Craig-Bampton mode set, the MacNeal-Rubin

mode set is generated by augmenting a low-frequency subset of the free I/F normal modes

with a set of static force response functions termed residual modes. The first k free I/F

normal modes q',,k, and the ordered eigenvalue matrix Akk, are related by the following

relation :

--M,,._,,kAkk + K.._.k = 0. (5)

The kept eigenvector matrix (I).k, which has been normalized with respect to the mass

matrix, may be partitioned into its rigid-body and flexible parts: [(I).r (I'.l]. Let All be the

eigenvalue matrix associated with the kept flexible modes. Then, the residual modes may

be determined by

-, r )F o (6)• ,,a = (pT S.. P,,. - _-I All (1).l ,

where P,,n I,, ]tar,,, _,,r r= -- _,r, Sn,, is the "pseudo" flexibility matrix of the component, s

defined as follows. Let the set of all physical coordinates be divided into three subsets : r, a,

and w. The r set may be any statically determinate constraint set which provides restraint

against rigid-body motion. The a set consists of coordinates where unit forces are to be

applied to define attachment modes (i.e., at the interface coordinates, and at coordinates

where external forces are applied). Finally, the w set consists of the remaining coordinates

in z. Using these definitions, the component stiffness matrix Knn is partitioned as follows :
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kr. k_, k.w ]

kar kaa kaw ]
The pseudo-flexibility matrix S,,n is now given by a matrix of the form 8

0 0 0
--1

00 kwa k,_w

Finally, the matrix F,_a is given by [Oa_, Iaa, O_w] T, where the identity matrix/_ is asso-

ciated with the a interface coordinates. The M-R mode set is [O_k ¢d,,_], which is then used

to generate a reduced-order model for the component.

3. A Component Modes Projection and Assembly Model Reduction (COM-

PARE) Methodology

Once CMS-based reduced-order component models are generated, they are assembled

using the interface compatibility conditions to produce reduced-order system models at vari-

ous system configurations of interest. Since the orders of these reduced-order system models

are typically smaller than those of the full-order system models, we have accomplished the

first of the two model reduction steps of the COMPARE methodology. However, note that

these CMS-generated reduced-order system models were obtained without using knowledge

of any system-level input-output information. This drawback is remedied in the second

stage, in which the EP&A methodology s'7 is used to further reduce the order of the models

generated in the first stage. Since the EP&A methodology has been described elsewhere, s'7

it will only be briefly reviewed here.

Consider a system with two flexible components. The undamped motion of component

A, as described by either its M-R or C-B mode set, is given by

A A A
I.#¢ + a. ,p = a.ou .

yA A A= HbpY p •

(7)

A and A the generalized coordinates and the diagonal stiffness matrix of com-Here, _p App are

ponent A, respectively. The dimension of ripA is p. The matrix GpA is an control distribution

A is an a x 1 control vector. Similarly, the matrix H_ is an output distri-matrix, and u_

bution matrix, and ybA is an b x 1 output vector. Similar equations can also be written for

component B.
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The system equations of motion at a particular articulation angle a may be constructed

using these component equations, and enforcing displacement compatibility conditions at

the component interface. To this end, let P(a) =[P Ar (a), P Br (_)]T be any full-rank matrix

mapping a minimal system state r/e into

,TY = L '

where rle is an e x 1 reduced-order system coordinate, and e = p + q - i (i is the number of

I/F constraint relations). For ease of notation, the dependencies of the matrices pA, p_,

r/A, _/2' and r/_ on a are dropped in the sequel. Substituting 7/A = pA r/e and r/qB = p_B r/e

into (7) and the corresponding equations for component B, pre-multiplying the resultant

equations by P Ar and p_r, respectively, and summing the resultant equations gives

y_ = H_rl_ ,

(8a)

(8b)

where M'e_, K_, G_a, and H_e, all functions of a, are given by

=pATp,, p3Tp3,- pe - pe -_-

I(ee = pATAA pA -b pBrAB pB
- pe "-pp- pc - qe "-qq- qe ,

Gea = pAT ('_TA BT- pe --pa + Pqe GBa ,

B B ,
H,q Pj_ J

where y_ = [y Ar ytBT] T, and s = b 'F I. To arrive at the equation for Ge_, we have as-

A B Otherwise, the term G_ ua in (8a)should be replaced bysumed that u a = u a = ua.

pAT (-JA pBT (7 B ] [tt Ar - BT1T Since Me, is symmetric and positive-definite while K_, is
" pe _pa, - qe -qa ' 'tta J "

symmetric and positive semi-definite, a transformation _5_e that diagonalizes Af_ and A'_

simultaneously can always be found. Let ¢¢ be the corresponding generalized coordinate,

i.e., r/_ = _e ¢_. Substituting this relation into (8a), and pre-multiplying the resultant

equation by _T e gives

4_3_+ A_¢_ = C_a_o,
(9)

y_ = 9_e¢¢,

where _T_M_5_ = I_, /_,_ = H_, G_ = (I'T_G_, and where A_ = g2TeI(eeg_ee

contains the undamped, reduced-order system eigenvalues along its diagonal. Equation (9)
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representsthe reduced-ordersystem model obtained from the first stageof the COMPARE

methodology.

The EP&A method is usedin the secondstageof COMPARE. With the EP&A method,

only k of the system's e modes are kept while the remaining t (= e - k) modes are removed.

The kept mode set is a composite mode set, consisting of "important" system modes from

all system configurations of interest, and not just from one particular configuration. With

this understanding, we have

_.,][¢k]¢t --¢_kek, (10)

where ek and et are generalized coordinates associated with the "kept" and "truncated"

modes, respectively, and eek and ¢I'et the corresponding eigenvector matrices.

The composite mode set ¢I'_k may now be projected onto the CMS-generated compo-

nent models: 7/A - pA Oek ¢A = A A_pkek • Here, cA denotes reduced sets of generalized

coordinates of component A. The substitution of the last relation into (7) produces the

"constrained" equations of motion for component A:

AT A Ar A A eA AT Aa2pk _pk (b2 + q_pk App_pk = '_pk Gpa u.. (11)

A second reduced-order system model can now be constructed using (11), a similar

equation for component B, and the displacement compatibility conditions at the component

I/F. The order of this new reduced-order model is smaller than that obtained from the first

step (cf. (9)) due to the truncation of "t" modes in (10). In addition, it has been proven

that the modes retained in the composite mode set ¢I'ek are captured exactly by the resultant

reduced-order system model (with a number of extraneous modes 3,4,5,6,7). However, the

static gain of the resultant reduced-order system model is not the same as that given by

(9). 7

Two different approaches were introduced in Lee and Tsuha 7 to preserve the static

gain of the system described by (9) in the second reduced-order system model. The first

approach involves augmenting the k "kept" modes of the system with an additional a modes

so as to create a statically complete mode set. The enlarged mode set is then "projected"

onto the components, and the reduced components are assembled as usual. 7 In the second

approach, the k "kept" modes of the system are first projected onto the components. After

the projections, the reduced-component mode sets are each augmented with static correction
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modes.The augmentedmode setsare then usedto reducethe components,and the resultant

component modelsare assembledto generatethe reduced-ordersystem model. The details

of these approachesare given below.

3.1 Component-level Augmentation Techniques 6'7

In the component-level augmentation approach, the k "kept" modes are first projected

onto the components. We first write

A A A A A A A

(12)

where E#k is the eigenveetor matrix associated with an eigenvalue problem of (II), and

isthe corresponding generalized coordinate. The transformation matrices Tp_ and Tq_ are

defined in (12). Matrix partitions T_r and TpAf denote eigenvectors associated with the

rigid-body and flexiblemodes of the projected component A model. Similar partitions are

made for the eigenveetors associated with the projected component B model.

Let TpA, TpAf, etc. be normalized such that

A T A A T A A
Tp, Tp, = L,-, Tp, App Tp_ = 0r,,

AT A AT A AT H T H=I H, T H AppT H= ,

(13)

where 3,_t I is an eigenvalue matrix associated with the projected flexible modes of component

A. Similar expressions can also be written for component B. Using the matrices defined in

(12-13), residual modes, s described in Section 2.2, may once again be used to augment the

projected mode sets of the components. From (6), the residual modes are given by

TpA (_pAT -A -A A--' A T= Sm, P_,p - TpfA_; Tpf )FA_, (14)

where

- A T
/SA = /-;A_ TpA Tp,. , (15)

and Spp-Ais the "pseudo" flexibility matrix of component A. If we assume that the diagonal

stiffness matrix of component A (see ApA in (7)) is ordered so that all the rigid-body modes

-A
(with zero frequency) are given first, then Spp is given by

[0 0 ] (16)0 AA -_ "
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Here 15 = p - r is the total number of flexible modes in the CMS mode set of component A.

In (14), the matrix F a is given by [Oar, I_a, 0,,-r-a ]T. Similar expressions can also be

written for component B.

The projected mode sets TpA and TqBk can now be supplemented with the residual

modes

[_,:j =T,v_2,
(17)

TaB /./B,

A and u B are generalized coordinates associated with the residual modes. Using thewhere v,

Ritz transformations suggested in (17), the new component-projected equations of motion

are

TArTA i)A_4_ TATAA T A A AT GCaUa,pv --pv --pv "-pp--pv Vv _ Tpv

T._. q + _"_"r" q = T,__ay_.
qv --qv --qv "-qq--qv

(18)

(19)

Using (18-19), the reduced-order system equations of motion at a particular system

configuration a can now be formed by enforcing displacement compatibility at the interface

A A B B (20)
Cip( Ol)_ p "Jc Ciq ( O_)_ q = O,

where Ci A and CiUq are matrices that establish the constraint relations between the gener-

alized coordinates of CMS generated component models, and i is the number of constraint

relations. Using (17), (20) becomes

Ciq_'q_ _B _B ,[CipT,, ] = [Die] u,, "-- 0 (21)

where [Die] is defined in (21), and c = 2v. To construct the reduced-order system model, we

partition the "compatibility" matrix [Die] using the Singular Value Decomposition (SVD)

technique

,, ,, , . [vcT][D.] Ciq Tqv= [c,,.'r,,,,, 1,= [u,,][_. 0,,_] .v_ J ' (22)

where d = c - i, and [Oid] is an i x d null matrix. We can now write 3'6'T

u_ = [P¢d] Ud = Ud , (23)C P_J
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where [Pcd] = [Vcd] (cf. (22)) is a full column rank mapping matrix, and vd denotes a

minimum set of generalized coordinates of a statically complete reduced-order system. Sub-

stituting v A = [PAl va and v_ = [pB] Vd into (18) and (19), pre-multiplying the resultant

equations by P Ar and P BT, respectively, and summing the resultant equations give

Madi)d + KddVd = Gdaua ,

Ys = HsdVd ,

(24)

(25)

where Mdd, Karl, Gda, and Hsd, all functions of a, are given by

,v,A T ,y,A DA B T B T B B
Mad = p_Af *p. *pv _ vd + P_d Tq,, Tq,.,P_,d, (26)

I(dd = BrAd T'c'ATAA ,_A I_A IDBT,'_BTAB "y'B DB"t pv '_'pp "t pv'L vd "{- _t vd X qv ''qq X qvl vd ' (27)

,y.AT (-_A B r= P;ST-p -po + (28)

"'bp--p." vd (29)Hsd ----- rrB'v'B DB "
"ta tq * qv't vd

Since Mdd is symmetric and positive-definite while Kdd is symmetric and positive semi-

definite, a transformation edd that diagonalizes hldd and I(dd simultaneously can always

be found. Let _.dd be normalized with respect to the mass matrix, and let Xd be the

corresponding generalized coordinate, i.e.,

vd = 'I'dd x_. (30)

Substituting (30) into (24-25) and pre-multiplying the resultant equation by q_Td give

lrdd)(d + Adaxa = Oaau,, ,

Ys = _Isdrld _

(31)

(32)

where

fIsd -_ Hsdd2dd ,

Oda = ¢_Tdada,

Add = @YdKdd_2dd •

(33)

(34)

(35)

Here Add is a diagonal matrix with tile undamped, reduced-order system squared frequencies

along its diagonal. It was proven in Lee and Tsuha 7 that q_¢k are captured exactly in _dd
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despite the augmentations of the projected component models with residual modes. Tile

matrix Add also contains a number of extraneous modes. 6

3.2 System Level Augmentation

The equation (9) may be decomposed into its kept and truncated parts:

Ikk_k "1- AkkCk = ¢bTekGea Ua, (36)

z,,;i,+ A,,¢,= c. uo.

The mode set cI,,t, which is truncated, will now be replaced by a smaller but statically

equivalent mode set q'_a- To find _, consider the following Ritz transformation 6

Ct = Rt,¢a, (37)

where Rta = A_t 1 cI'_T Ge_.

Here ¢_ is the generalized coordinate associated with the augmented mode set q'ea. It

can be shown that the static gain due to the mode set [¢I'ek _¢a] = [_k ¢I'_tRt,] is identical

to that of the original system (cf. (9)). 6 Hence, [q'ek _tRt,,] is a statically complete mode

set.

Several observations regarding the augmented mode set [_2_k _t Ru,] are in order. First,

note that the augmented mode set contains two parts. The first part contains a selected

number of eigenvectors which satisfy the eigenvalue problem defined by ]tl_¢ and K_. The

second part is formed using the residual flexibility matrix and the distribution matrix of the

external load. Hence, _t Rt,_, unlike _k, is a function of the external load distribution.

Next, we observe that _,t Rt_ is identical to the residual mode defined in Section 2.2.

Also, note that this mode set is mass and stiffness orthogonal to the retained mode set ¢ek.

Hence, tile two parts of the augmented mode set are linearly independent. This statically

complete mode set is now ready for projections onto the various flexible component models

to generate reduced-order component models. The reduced-order component models may

then be assembled to generate the reduced-order system model using the procedures outlined

in Section 3.1.

4. Applying COMPARE on A High-order Finite-element Galileo Model

The effectiveness of the proposed COMPARE methodology will now be demonstrated

using a high-order finite-element model of the cruise-configured Galileo spacecraft. Tile
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three-body topology of the dual-spin Galileo spacecraftis illustrated in Fig. 3.7 The rotor

is the largest and most flexible component represented,with 243 dof. The smaller and

more rigid stator is representedwith 57 dof. Lastly, the scanplatform is the smallest body

idealized as rigid, with 6 dof.

For the purpose of controller design,a low-order system model, accurate at all config-

urations of interest and over a frequency rangeof interest (0-10 Hz) is needed.To this end,

we apply the MacNeal-Rubin version of the COMPARE methodology on the Galileo model.

The first stage of COMPARE requires the generation of M-R mode sets for all tile flexible

components. Following standard procedures,free interface normal modesof both the rotor

and stator are first determined, and then truncated at twice the frequency of interest (20

Hz). Next, these truncated normal mode sets are each augmented with residual modes to

generate the neededM-R mode setsfor both the stator and rotor.

Next, the MacNeal-Rubin mode setsand the interface compatibility conditions areused

to construct systemmodelsat all systemconfigurationsof interest, and determine from them

important system-levelmodesat all clock anglesof interest. The selectedcomposite mode

set has 8 rigid-body and 21 flexible modes.

The next step is to augment the compositemode set with one or more static-correction

modes. For the Galileo example, we augment the composite mode set with two residual

modes,onefor an input torque about the Z-axison the rotor sideof the rotor/stator interface,

and a secondequal and opposite torque on the stator side of the interface. The enlarged

modeset is then projected onto the flexible components. The resultant reduced-ordermodels

of the rotor and stator have 29 (with 6 rigid-body) and 21 (with 8 rigid-body) modes,

respectively. The assembledreduced-ordermodel has 44 (with 8 rigid-body) modes. The

natural frequenciesof thesereduced-ordercomponentmodels and of the system model at a

clock angle of 300 degreesare tabulated in Table 1. All system flexible modes retained in

the composite mode set have beencaptured exactly in the reduced-order system model.

Comparisons of Bode plots of full-order and reduced order models, at clock angles of

60, 180, and 300 degrees, are given in Figs. 4, 5, and 6 respectively. Actuation was done

at the Spin Bearing Assembly (SBA) located at the rotor-stator interface (along the Z-axis,

cf. Fig. 3), and sensing was done by a gyroscope located on the scan platform. From

these comparisons, we observe that the frequency responses of the full-order models, at all
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configurations of interest, have been closelycaptured by their reduced-ordercounterparts,

over the frequency range of interest (0-10 Hz). Results obtained at other clock anglesare

similar to thosedepicted in Figs. 4-6.

5. Concluding Remarks

A two-stage model reduction methodology, called COMPARE, is proposed in this re-

search. The first stageof this methodology involves the generation of CMS mode sets for

the flexible components. The resultant component models are then combined to generate

reduced-ordersystemmodelsat various systemconfigurations. A composite modeset which

retains important system modesat all system configurations is then determined from these

reducedorder system models. In the secondstage, the EP_:A model reduction method is

employedto reducefurther the order of the systemmodel generated in the first stage.

The merit of the COMPARE methodology is that system models (at various system

configurations) assembledusing CMS-generatedcomponentmodels are smaller in size than

the full-order system models. Hence, COMPARE alleviates the need to solve large-order

eigenvalueproblems repetitively. The needto generatethe components' M-R or C-B mode

setsis not a disadvantagebecauseefficient software exists for their construction (see,e.g.,

Tsuhag). The effectivenessof COMPARE, using the M-R version of COMPARE, has been

successfullydemonstrated on a high-order, finite-element model of the cruise-configured

Galileo spacecraft.

6. References

1. Bodley, C.S., Devers, A.D., Park, A.C., and Frisch, H.P., "A Digital Computer Pro-

gram for the Dynamic Interaction Simulation of Controls and Structure (DISCOS),"

NASA Technical Paper 1219,Vols. I and II, NASA Center for AeroSpaceInformation,

Baltimore, Maryland, May, 1978.

2. Spanos,J.T. and Tsuha, W., "Selection of Component Modes for the Simulation of

Flexible Multibody Spacecraft," Journal of Guidance, Navigation, and Control, Vol.

14, No. 2, pp. 278-286, March/April, 1991.

3. Bernard, D., "Projection and Assembly Method for Multibody Component Model Re-

duction," Journal of Guidance, Control, and Dynamics, Vol. 13, No. 5, Septem-

ber/October, 1990.

57



4. Eke, F.O. and Man, G.K., "Model Reduction in the Simulation of Interconnected Flex-

ible Bodies," paper AAS 87-455, AAS/AIAA Astrodynamics Specialist Conference,

Kalispell, Montana, August, 1987.

5. Tsuha, W. and Spanos, J.T., "Reduced Order Component Modes for Flexible Multibody

Dynamics Simulations," paper presented at the AIAA Aerospace Sciences Meeting,

Reno, Nevada, January, 1990.

6. Lee, A.Y. and Tsuha, W.S., "Applying the Enhanced Projection and Assembly Model

Reduction Methodology on Articulated, Multi-flexible Body Structures," Proceedings

of the IEEE Singapore International Conference on Intelligent Control and Instrumen-

tation, February 17-21, 1992.

7. Lee, A.Y. and Tsuha, W.S., "An Enhanced Projection and Assembly Model Reduction

Methodology," Proceedings of the AIAA Guidance, Navigation, and Control Confer-

ence, New Orleans, Louisiana, August 12-14, 1991.

8. Craig, R.R., Jr., Structural Dynamics: An Introduction to Computer Methods, John

Wiley and Sons, Inc., New York, 1981.

9. Tsuha, W.S., The Benfield-Hruda, MacNeal-Rubin, and Craig-Bampton Mode Set Genera-

tion Procedures, JPL Publication D-7213 (internal document), Jet Propulsion Laboratory,

California Institute of Technology, February, 1990.

7. Acknowledgments

The research described in this paper was conducted at the Jet Propulsion Laboratory,

California Institute of Technology, under a contract with the National Aeronautics and

Space Administration. The authors wish to thank Dr. D. Eldred, Dr. J. Spanos, and Dr.

M. Wette for many helpful discussions and valuable suggestions. We also wish to thank Dr.

M. Lou and Dr. G. Man for their interest and encouragement.

68



Table 1 Frequencies of Reduced-order Stator, Rotor,

and System (at a Clock Angle of 300 degrees) Flexible Modes

Flexible Mode

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Wst_tor (Hz)

35

7.105

9.129

10.561

14.560

43.172

50.070

COroto r (Hz)

0.143

0.866

1.237

1.483

1.728

2.286

2.809

_:_yst_. (Hz)
0.127

0.864 t

1.236 t

1.479 t

1.707 t

1.734 t

2.072 t63.530

80.867 3.647 2.351 t

86.989 3.996 2.815 t

96.605 5.207 3.707 t

166.34 5.337 4.167

240.18 5.994 5.231 t

254.52 6.410

9.503

10.291

10.553

13.536

15.613

29.188

41.181

58.524

69.003

77.722

5.433

5.467 t

6.150

6.436

7.056t

8.153t

9.606 t

9.613

10.294

10.420t

10.555 t

13.534 t

13.997

15.860

16.800 t

20.591

21.280 t

28.46230

31 34.316

32 41.214

33 48.011

34 58.318

71.770 t

36 82.129 t

t Exactly captured system flexible modes.
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Component A

Component B

• _,

• •

Q •

'6 ' _,

I/F

o zi, Interface Coordinates

• zj, Interior Coordinates

t.
v T

Fig. 2 Coordinate Definitions of A 2-Component System
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111

Fig. 3 Galileo Spacecraft Cruise Model 2,6,r
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